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J. Phys. A: Math. Gen. 17 (1984) 877-883. Printed in Great Britain 

Solution of the Heisenberg equations for an atom 
interacting with radiation 

B Buck and C V Sukumar 
Department of Theoretical Physics, 1 Keble Road, Oxford, UK 

Received 6 June 1983 

Abstract. It is shown that the nonlinear equation of motion for the energy operator of a 
few-level atom interacting with a single mode radiation field can be solved explicitly. 

1. Introduction 

The model system of an idealised few-level atom, or a spin system in a magnetic field, 
interacting with a single mode radiation field is of particular interest in quantum optics. 
Here we consider an atom with 2 J + 1  levels and represent its Hamiltonian and 
transition operators by means of the components of an angular momentum vector 
operator J.  The field is described by the creation and destruction operators for a linear 
oscillator and the atom-field coupling is assumed to induce transitions between neigh- 
bouring atomic levels with emission or absorption of single radiation quanta. 

This type of model is considered to contain at least some of the essential physics 
underlying the interaction of matter with radiation and has been widely studied (Jaynes 
and Cummings 1963, Senitzky 1971), especially for two-level systems (Allen and 
Eberly 1975). The two-state atom corresponds to J = $ and for given initial conditions 
the dynamical behaviour of the atomic energy can be found completely in either the 
Schrodinger or Heisenberg pictures. For systems with more than two levels ( J > i) it 
has previously been thought that the Heisenberg equations were not amenable to 
formal solution; but we will show that these nonlinear operator equations can in fact 
be solved explicitly, even when the radiation is not in resonance with the atom. 

In 0 2 we give the Hamiltonian and discuss the relationship between the Schrodinger 
and Heisenberg methods. In 0 3 we derive the equation of motion for the energy 
operator of the atom and solve it for a two-level system on or off resonance. We then 
describe a method of reducing the equations for J > 4 to linear form and apply it to 
give the complete solution for a three-level atom in resonant interaction with the field. 
In 0 4 we derive the solution for a three-level atom detuned from resonance and also 
extend the methods to treat a four-state resonant system. Section 5 contains a short 
summary. 

2. Model Hamiltonian 

The energy operator for an atomic system with 2 J + 1  equally spaced levels, with 
separation E ,  is represented by &J3 where J3 is the three-axis component of angular 
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momentum. A single quantum of the radiation mode is taken to have unit energy so 
that the field Hamiltonian is uta, the number operator for oscillator phonons. For 
the atom-radiation coupling we assume a simplified version of electrodynamic dipole 
coupling, (+A)[ J+a +J-at] ,  where A is a constant and J ,  = ( J1 f iJ2) are the angular 
momentum shift operators. This describes emission or absorption of a single phonon 
accompanied by the lowering or raising of the atomic energy to an adjacent level. It 
is known as the rotating wave approximation and appears to be essential for obtaining 
a soluble model. The simplified interaction implies neglect of small energy shifts and 
is physically reasonable if the field is not too intense. 

With these assumptions the Hamiltonian is 

H = at a + EJ3  + ($A )[ J+ a + J-a 7, 

[ J+,  3-3 = 233, [ J3, J,] = f J + ,  [ U ,  U t ]  = 1, 

(1) 

(2) 

and at a fixed time the relevant commutation relations are 

with all other equal time commutators zero. 
It is easy to establish that the operators J 2  = $ [ J + J - + J - J + ] + J :  and C = u t a  + J 3  

commute with H and each other; hence simultaneous eigenstates of H, J 2  and C may 
be constructed. For a fixed J-value the atomic states are denoted by ( M ) ,  M = - J, 
- J  + 1, . . . , + J  and satisfy J31M) = M ) M )  while the field states In), n = 0, 1, 2, .  . , 
are eigenstates of the phonon number operator with ataln)  = nln). The eigenstates 
of H may be expanded in the form 

and are labelled by the energy E and the eigenvalues y = M + n of the operator C. 
In the Schrodinger picture the expectation value g( t )  of the atomic energy in a 

state It+b(r)), which has evolved from some given initial state It+b(O)) of atom and field, 
is given by 

g( t> = ~(t+b(f)IJ3I$(t)). (4) 
To evaluate this we need first to find the eigenvalues and eigenstates of H, then to 
construct the initial state as a superposition 

I$(O)>= c r)l& Y), 
E. Y 

and finally to calculate the complicated sum 

In the Heisenberg picture the initial state remains fixed and the operators are 
time-dependent. Hence if we can determine, once and for all, the explicit time 
dependence of J 3 ( t )  = exp(iHr)J(O) exp( -iHt) we can follow the evolution of % ( t )  by 
calculating the matrix element 

g ( t )  = E(t+b(o)IJ3(t)I$(o)> (7) 
for any desired initial state. It is clear from equation (6) that the explicit expression 
for J 3 ( f )  must contain effective frequency operators whose eigenvalues are alr the 
energy differences between the eigenstates of the coupled system. Thus we expect the 
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solution for J 3 ( t )  to be quite complicated. Indeed the Heisenberg method for this 
model leads to nonlinear operator equations and these are usually considered to be 
intractable. 

3. Two- and three-level atoms 

3.1. Heisenberg equations 

Starting from the Hamiltonian (1) and the commutators (2) we write down the 
Heisenberg equations for various operators Q in the usual way, i.e. io = [ Q, HI. It 
is convenient to define the constant 

(Y=E-l ,  (8) 

A = H - C ,  B = ( f A ) [ J + a - J - a t ]  (9a, b )  
c = .+a + J 3 ,  D =  (+A)[ J+a + J - a t ] = A  - ( Y J ~ .  ( 9 ~  4 

measuring the detuning from resonance, and the subsidiary operators 

The operator C commutes with H and is therefore a constant of the motion which, 
moreover, commutes separately with a+a and J3. Clearly A is also a constant operator. 

Using the relations 

J+J- = 5 2 -  J :  + J 3 ,  J - J + = J 2 -  J : -  J3, (10) 

i J3 = B, (11) 

iB = n 2 ~ ,  - ( + A ~ ) [ ~ J :  - J ~ ]  - (YA, (12) 

R 2 = a 2 + A 2 ( C + f ) .  (13) 

j3+f12J3=($A2)[3J:-J2]+ (YA, (14) 

the following Heisenberg equations are quickly established: 

in which the frequency operator R is defined by 

These expressions lead immediately to the nonlinear operator equation of motion 

which involves only the atomic energy operator J3 and the constant operators R2, J 2  
and A. Note that R2 and 6’ communte with J3 and B at all times while A = H - C 
does not. 

3.2. Two-level atom 

The above equations are easily solved for a two-level atom both on and off resonance. 
For a system with J = $ we always have J 2  = and J :  = 4 so that the operator equation 
(14) reduces to 

j 3  + R2J3 = (YA, (15) 
and the general solution of this is easily seen to be 

J3( t )  = [ J3( 0 )  - ( (w/R’)A] cos R ?  - i[ B( O ) / R ]  sin Rt + ( a / R 2 ) A .  (1 6) 

This solution has been used by Eberly et a1 (1980, 1981) to study the long time 
behaviour of ($(O)l J 3 ( t ) ( $ ( 0 ) )  for an atom, initially in its ground state, interacting 
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with a coherent radiation field, and it led to the surprising discovery of periodic decay 
and regeneration phenomena. Buck and Sukumar (1981) used a related model, with 
a solution similar to the above, to find the behaviour of (J3(  t ) ) ,  at arbitrary times, in 
closed analytic form, for both coherent and thermal radiation. 

3.3. Extension of method 

The above simplification does not occur for an atom with more than two states ( J > i). 
To make further progress we return to equation (14) and differentiate it twice with 
respect to time to obtain 

.... 
J3+f12.f3 =$A’(d’/dt’)( J : )  

where { , } denotes an anticommutator and we have used equation (11) .  Now from 
the definitions of B and D we have 

(18) B2 = D2 - ( f A ’) [ J+J- aa + J-J+ a ‘ a  1, 

and using equations (lo),  together with D = A - a J3,  we find 

B2=f12JZ-a{A, J 3 } + A 2 J 3 ( J 2 - J 3 2 - 4 ) - r ,  

where is a constant operator defined by 

= A ’( C + f ) J ’ -  A’. (20) 

The anticommutator { J 3 ,  j3 }  may be rewritten in terms of J3 using equation (14) 

J3+f12.f3= ($i2)[3u{A, J3}-4R’J,2+A2J3(5J32-335’+ 1)+2I‘]. (21) 

so that 
.... 

Finally, we substitute for J :  from equation (14) and simplify to finish with 

ji’+ 5R2.f3 + 4f14J3 = ($A ’)[A ’J3(5J: - 3J2+ 1)  + 3a{A, J3}] 

+ [4aRZA + A2(R2 - 3a’)J’ - 3 A  ’A’], (22) 
where the last bracketed term is a constant of the motion. 

It may seem at first sight that not much has been achieved by these manipulations 
since we started from a second-order equation for J3 with a quadratic nonlinearity 
and have arrived at a fourth-order equation with a term cubic in J3. However, the 
equation is now in a form suitable for treating the three-level atom since we can use 
the operator identity J :  = J3, valid for systems with J = 1.  Hence for this case equation 
(22) is actually linear in J3 and can be solved. 

This suggests a systematic technique for solution of the equations when J 3 1.  
Continuing the processes of differentiation and simplification we generate higher-order 
equations with increasing degrees of nonlinearity. The system of equations eventually 
leads to a linear form because the general identity, valid for any fixed J, 

(J3-J) (J3- (J- l ) ) .  . . (53+(5-1))(53+J)=O (23) 
allows the operator J:J+’ to be expressed in terms of lower powers of J3. Unfortunately, 
the amount of work involved escalates rapidly as J increases and the general linear 
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equation for arbitrary J has not yet been found. Here we content ourselves with 
exhibiting the solutions for three- and four-state atoms. 

3.4. Resonant three-level atom 

For a three-level atom in resonance with the field we have J = 1 and a = E - 1 = 0. 
The equation of motion (22) then simplifies to 

.... 
J3 + 5n2.f3 + 4n4J3 = A ’[2R2 - 3AZ], (24) 

where now a’ = A’(C +$) and we have used the relations 3’ = 2, J :  = J3.  Thus the 
operator 

j3=J3-(A2/4524)[202-3A2] (25) 

. f3+5RZj+4a4j3=0,  (26) 

w4-5fl’w2+4i14=0, (27) 

satisfies the homogeneous linear equation .... 

which is easily solved by the ansatz j 3 ( f )  = j3(0)  exp(iwt) to give 

for the new effective frequency operators w. 
Hence we obtain w = *a or *2R and the complete solution for J 3 ( t )  may be 

expressed in terms of harmonic functions of ut multiplied by combinations of the 
initial operators J3(0) ,  j3(0) ,  J3 (0 )  and &(O), which are easily constructed from 
previously derived equations. The energy level diagram obtained by Senitzky (1971) 
for the three-level atom implies that precisely the above frequencies would arise in a 
calculation of ( J 3 ( t ) )  when the system is at resonance. 

4. Higher-order equations 

4.1. Three-level atom off resonance 

When the three-state system is detuned from resonance (a = E - 1 # 0) the reduction 
of equation (22) to soluble form is considerably more difficult. Again using J’ = 2 and 
J :  = J3 we find 

(28) 
.... 
J3 + 50’j3 + 4R4J3 = (&A ’){A, J3} + A, 

in which a’ = a’ + A ’ (C + t )  and we have defined 

A = 2f12[2aA+A2]-3A2[AZ+2a2]. (29) 
We next eliminate the anticommutator {A, &}. Differentiating twice more leads 

to an equation of sixth order involving the quantity {A, j3}  into which we substitute 
equation (14). This gives rise to the anticommutators {A, J3} and {A, J,’}, the first of 
which may now be eliminated by use of equation (28) itself. The second may be 
simplified using the definition A = D + aJ3 of equation (9d) together with the special 
properties of the operators J ,  and J3 for spin one. After some tedious algebra we 
arrive at the simple result 

{A, J: }  = aJ3 + A. (30) 
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Hence we deduce the sixth-order linear equation 

d6J3/dt6+ 6R2 d4J3/dt4+ 9R4 d2J3/dt2 +[4R6-y~2A4]J3 = R, (31) 

where the constant operator R is defined by 

R = 9aA2A[aA - ($A2)]+R2A. 

It is now straightforward to construct the general solution of equation (31) by 
considering 

J 3  = J3 - 4 R / [ 1 6Q6 - 2 7 a ’A “1, 

d6j3/dt6+ 6R2 d4j3/dt4+ 9R4 d2j3/dt2+[4R6-y~2A4].?3 = 0. 

(33) 

(34) 

which satisfies the homogeneous equation 

The trial solution j3(f) = j3 (0)  exp(iot) gives the following equation for the effective 
frequency operators W :  

w ~ - ~ R ~ w ~ + ~ R ~ w ~ - [ ~ R ~ -  (ya2A4)] = 0, (35) 

[ 3 4 2 R  - w 3/2Q3]2 = [ 1 - 27a 2 A  4/ 1 6Q6]. (36) 

which may be rewritten in the form 

The solutions of this equation are found to be 

U,,, = *2R sin[${mr+cos-’(3h ah2/4R3))] (37) 
where m = * l ,  0. The frequencies thus obtained are consistent with the eigenvalue 
spectrum of a three-level atom coupled to the radiation field. 

4.2. Resonant four-level atom 

As a final example we consider radiation in resonance with a four-state system ( J  = 1). 
To treat this we must return to equation (22), put a = 0, and use the same technique 
as before. That is, we continue to differentiate and at each stage eliminate unwanted 
operators by use of the lower-order equations. Eventually the process stops when we 
reach an equation with a quartic nonlinearity which may be reduced by means of the 
operator identities J 2  = and 

(J:-$)(J:-:)=o. (38) 
The algebraic manipulations are long and involved and we give here only the final 

result, which is the eighth-order linear equation 

dsJ3/dts+ 15R2 d6J3/dt6+ 9Q4[7 - 3A4/4R4] d4J3/dt4 

+ 5R6[17 - 9h4/2R4] d2J3/dt2 + 9R8[A- 7A4/4R4- 9h8/4R8]J3 = A, 
(39) 

A =  ($A6)[135R2+2A2]+ (yA2R4)[5Q2-4A2]. (40) 

in which Q2 = A 2( C + f) and we define 

In terms of the variable 

~ = [ 1 + ( 9 A ~ / 1 6 Q ~ ) ] ~ ’ ~ - l  
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the effective frequency operators are given by 

w1 = *R[l-  4 ~ 1 ” ~  

w 2 =  * R [ 9 + 4 ~ ] ’ / ~  

w 3 =  *(fn)[(9+4v)’/2- (1-4~)’ / ’ ] ’  

w4 = * ($R)[(9 + 4 ~ ) ’ ”  + (1 - 4v)’l2] 

and agree with the energy eigenvalue spectrum 

E =  * ( @ ) [ 1 - 4 ~ ] ” ~ ,  * ( f R ) [ 9 + 4 ~ ] ” ~  (43) 

found by Senitzky (1971). The general solution of equation (39) is of course a linear 
combination of the solutions with frequencies U,, n = 1, 2, 3, 4. 

5. Summary 

In this paper we have demonstrated by example that it is possible to solve the 
second-order nonlinear Heisenberg equation for the model of a few-level atom in 
resonant or non-resonant interaction with a single mode radiation field. The method 
can clearly be applied systematically for an atomic system with an arbitrary number 
of equally spaced states. It is conceivable that a general recursive formulation remains 
to be discovered. 
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